ETV Drinking Water Systems (DWS) Center

For EPA Science Forum

By Jeffrey Q. Adams & C. Bruce Bartley

May 18, 2005

Drinking Water Systems (DWS) Center: History & Background

- **♦** The DWS center is one of six ETV centers.
- Began October 1995 with focus on small systems technology needs.
- Protocols provide uniform testing and quality control procedures.
- Testing primarily performed in the field.
- State collaboration necessary for acceptance & support.
- Next phase: private sector & non-EPA financial support .

USA Drinking Water Regulations Relationships

States Support

- ◆ ASDWA involved and supported ETV DWS Center since inception.
- Annual states survey showed increasing ASDWA member support.
- States review of protocols, test plans, and reports. Provide input and improvements in protocols.
- States use ETV reports in approving alternative technologies.
- States represented on Steering Committee.

Stakeholders Collaborate on Pre-Test Protocols

- Expert researches and writes draft protocol.
- Another expert performs technical review.
- Interested stakeholders and all 50 states review draft protocol.
- **♦** The stakeholder committee reviews and recommends final draft protocol.
- The EPA and NSF independently QA review protocol and consider use in ETV tests.
- ♦ After used in ETV test, stakeholder feedback basis for modifications & improvements.

ETV DWS Center: Arsenic Technologies

Technology	Completed	In Progress	Pending
Reverse Osmosis (RO)	3	0	0
Coagulation with Filtration	3	2	0
Adsorption (disposable, ion exchange or regeneration)	2	1	0
TOTAL	8	3	0

Collaborative Efforts (a)

State of Utah:

- Park City, Utah.
- Laboratory analyses (\$25K).
- Reviewed test plans & reports.

State of Pennsylvania:

- Small systems (orchard hills mobile home park & Hilltown township).
- Lab analyses (\$30K in-kind)
- Cash contributions (\$20K)
- Reviewed test plans & report.

Collaborative Efforts (b)

- State of Alaska & EPA OGWDW:
 - Technical assistance center.
 - Small systems (Southwood Manor).
 - Field & lab testing (\$50K in-kind).
 - Sate reviewed test plans & reports.
- State of Michigan:
 - Small systems (St. Louis Center & Oakland county drain commission).
 - Sate reviewed test plans & reports.

Participating Arsenic Technologies

- Chemical coagulation.
 - Pre-engineered skid mounted package plants, (ferric chloride addition followed by floculation and then filtration).
 - In-line chemical feed (rapid mix) with direct filtration (no floculation step using microfiltration membrane).
 - Oxidation of natural iron to form hydroxide floc to co-precipitate arsenic, then direct filtration.
 - Remote sensing & control of chemical feed and operations.

Coagulation Package Plant Tested

Participating Arsenic Technologies

Media:

- Iron coated natural substrate.
- Iron treated activated alumina.

Reverse osmosis:

- Membrane modules with backwash and cleaning cycles for re-use (conventional approach, measure flux and water production).
- Skid system with low pressure RO with limited periodic cleaning and/or membranes disposed for small system applications.

Typical Arsenic Media Tested

RO Modules Tested

Arsenic Technology Test Results

- All but one verified technology reduced arsenic consistently below the MCL of 10 ppb.
- Most achieved arsenic reductions to the reportable detection limit (~ 2 ppb).
- Preliminary test results of technologies in progress have similar trends.
- Performance greatly influenced by water quality & process parameters.

Arsenic Technology Test Results

- Operational parameters measured with varying results:
 - Chemical consumption.
 - Electrical power.
 - Labor.
 - Ease of use estimated.
- Example:
 - Chemical feed pump break downs.

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Impacts & Outcomes

- ETV provides information to help States, utilities, and other organizations select appropriate water treatment technologies to meet the 10 ppb arsenic regulatory standard.
- Many of the ETV verified technologies demonstrated the capability to reduce arsenic levels in drinking water to 5 ppb or less.
- This provides several available alternatives for off-the-shelf technology products to the estimated 4,100 drinking water systems anticipated to be required to install treatment to meet the new arsenic standard.

- Arsenic in drinking water is a known carcinogen with additional adverse human health impacts.
- EPA estimated health benefits of arsenic reduction in its EA 2000 report (EPA-815-R-00-026).

Annual Total Cancer Cases Avoided from Reducing Arsenic in the 4100 CWSs and NTNCs

A is enic Level (ppb)	Reduced Mortality Cases	Total Cancer Cases Avoided
3	32.6 – 74.1	57.2 – 138.3
5	29.1 – 53.7	51.1 – 100.2
10	21.3 – 29.8	37.4 – 55.7

- Many ETV verified technologies may be applicable as treatment for most of the estimated 4,100 systems affecting 12.7 million people, but a more conservative case is presented here.
- The estimated 100% potential market for ETV technologies includes the 3,900 smaller community systems affecting about 4.4 million people.
- Economic benefits of lung and bladder cancer prevention by ETV verified arsenic treatment technologies are estimated for different market penetration scenarios.

Estimated Health Benefits of Lung & Bladder Cancer Prevention by ETV Arsenic Treatment Technologies (\$ Millions per year).

Market Penetration	Lower Bound	Upper Bound
10 %	4.8	6.8
25 %	12.1	17.1

The above estimated economic benefits do not include other combined health benefits for liver, kidney, skin, & prostate cancers; cardiovascular, immunological, neurological, & endocrine effects.

- State agencies have indicated that ETV studies may help minimize pilot testing requirements and help expedite the approval and implementation of arsenic treatment technologies at sites.
- Assume a \$20K pilot testing cost, and a reduction in pilot studies for ETV technologies ranging from 10% - 75% required.
- For a 10% market penetration of ETV verified systems, estimated pilot testing savings may range from about \$800K to \$5M.
- Also, ETV results help provide technology vendors with valuable data on product weaknesses that may be addressed in subsequent product modifications.

